Publications

You can also find my articles on my Google Scholar profile.

Preprints and Submitted Articles

  1. M. Witte, F. R. Lapolli, P. Freese, S. Götschel, D. Ruprecht, P. Korn, C. Kadow:Dynamic Deep Learning Based Super-Resolution For The Shallow Water EquationsarXiv:2404.06400, submitted, 2024. https://arxiv.org/abs/2404.06400
  2. A. Q. Ibrahim, S. Götschel, D. Ruprecht: Space-time parallel scaling of Parareal with a Fourier Neural Operator as coarse propagatorarXiv:2404.02521, submitted, 2024. https://arxiv.org/abs/2404.02521
  3. P. Freese, S. Götschel, T. Lunet, D. Ruprecht, M. SchreiberParallel performance of shared memory parallel spectral deferred correctionsarXiv:2403.20135, submitted, 2024. https://arxiv.org/abs/2403.20135

  4. J. Angel, S. Götschel, D. Ruprecht:Impact of spatial coarsening on Parareal convergencearXiv:2111.10228, 2021. https://doi.org/10.48550/arXiv.2111.10228

Refereed Articles

  1. G. Čaklović, T. Lunet, S. Götschel, D. Ruprecht:Improving Efficiency of Parallel Across the Method Spectral Deferred CorrectionsSIAM J. Sci. Comput., accepted, 2024. Preprint
  2. T. Baumann, S. Götschel, T. Lunet, D. Ruprecht, R. Speck:Adaptive time step selection for Spectral Deferred CorrectionsNumer. Algorithms, accepted, 2024. https://doi.org/10.1007/s11075-024-01964-z
  3. J. Angel, J. Behrens, S. Götschel, M. Hollm, D. Ruprecht, R. Seifried:Bathymetry reconstruction from experimental data using PDE-constrained optimisationComputers & Fluids, Volume 278, 2024. https://doi.org/10.1016/j.compfluid.2024.106321.
    Data Code
  4. I. Akramov, S. Götschel, M. Minion, D. Ruprecht, R. Speck:Spectral deferred correction methods for second-order problems SIAM J. Sci. Comput., 46:3, A1690-A1713, 2024. https://doi.org/10.1137/23M1592596
  5. C. Yang, C. Adam, S. Götschel:Evaluation of On-the-fly Scanning Effects on Complex Field Retrieval Using a Single Probe In: 2024 International Symposium on Electromagnetic Compatibility – EMC Europe, 2024. https://doi.org/10.1109/EMCEurope59828.2024.10722745
  6. C. Yang, C. Adam, S. Götschel:Complex Near-Field Measurement Using On-The-Fly Scan with In-phase and Quadrature Demodulation In: 15th German Microwave Conference (GeMiC), pp. 181-184, 2024. https://doi.org/10.23919/GeMiC59120.2024.10485338
  7. C. Yang, C. Adam, S. Götschel:Single-probe Near-field Phase Retrieval using On-The-Fly Scan and Hilbert Transform In: 2023 International Symposium on Electromagnetic Compatibility – EMC Europe, 2023. https://doi.org/10.1109/EMCEurope57790.2023.10274183
  8. A. Q. Ibrahim, S. Götschel, D. Ruprecht: Parareal with a physics-informed neural network as coarse propagator In: Cano, J., Dikaiakos, M.D., Papadopoulos, G.A., Pericàs, M., Sakellariou, R. (eds) Euro-Par 2023: Parallel Processing. Euro-Par 2023. Lecture Notes in Computer Science, vol 14100. Springer, 2023. https://doi.org/10.1007/978-3-031-39698-4_44
  9. D. Hristov, L. Mustonen, R. Von Eyben, S. Götschel, M. Minion and A. E. Kaffas:Dynamic Contrast-Enhanced Ultrasound Modeling of an Analog to Pseudo-Diffusivity in Intravoxel Incoherent Motion Magnetic Resonance ImagingIEEE Trans Med Imaging, 2022. https://doi.org/10.1109/TMI.2022.3197363
  10. S. Götschel, M. Minion, D. Ruprecht, R. Speck:Twelve Ways to Fool the Masses When Giving Parallel-in-Time ResultsIn: Ong, B., Schroder, J., Shipton, J., Friedhoff, S. (eds) Parallel-in-Time Integration Methods. PinT 2020. Springer Proceedings in Mathematics & Statistics, vol 356. Springer, 2021. https://doi.org/10.1007/978-3-030-75933-9_4
  11. S. Götschel, A. Schiela, M. Weiser:Kaskade 7 - a Flexible Finite Element ToolboxComput. Math. Appl. 81:444-458, 2021. https://doi.org/10.1016/j.camwa.2020.02.011
  12. M.-C. Weber, L. Fischer, A. Damerau, I. Ponomarev, M. Pfeiffenberger, T. Gaber, S. Götschel, J. Lang, S. Röblitz, F. Buttgereit, R. Ehrig, A. Lang:Macroscale mesenchymal condensation to study cytokine-driven cellular and matrix-related changes during cartilage degradation Biofabrication 12(4):045016, 2020. https://doi.org/10.1088/1758-5090/aba08f
  13. S. Götschel, M. Minion:An Efficient Parallel-in-Time Method for Optimization with Parabolic PDEsSIAM J. Sci. Comput. 41(6):C603-C626, 2019. https://doi.org/10.1137/19M1239313
  14. S. Götschel, M. Weiser:Compression Challenges in Large Scale Partial Differential Equation SolversAlgorithms 12(9):197, 2019. https://doi.org/10.3390/a12090197
  15. S. Götschel, M. Minion:Parallel-in-Time for Parabolic Optimal Control Problems Using PFASSTIn: Bjørstad P. et al. (eds) Domain Decomposition Methods in Science and Engineering XXIV. DD 2017. Lecture Notes in Computational Science and Engineering, vol 125., Springer, pp.363-371, 2018. https://doi.org/10.1007/978-3-319-93873-8_34
  16. L. Fischer, S. Götschel, M. Weiser:Lossy data compression reduces communication time in hybrid time-parallel integrators Comput. Vis. Sci. 19(1):19-30, 2018. https://doi.org/10.1007/s00791-018-0293-2
  17. J. P. Müller, S. Götschel, C. Maierhofer, M. Weiser:Determining the material parameters for the reconstruction of defects in carbon fiber reinforced polymers from data measured by flash thermographyAIP Conference Proceedings pp. 100006, 2017. https://doi.org/10.1063/1.4974671
  18. S. Götschel, M. Weiser:Lossy Compression for PDE-constrained Optimization: Adaptive Error ControlComput. Optim. Appl. 62(1):131-155, 2015. https://doi.org/10.1007/s10589-014-9712-6
  19. S. Götschel, C. von Tycowicz, K. Polthier, M. Weiser:Reducing Memory Requirements in Scientific Computing and Optimal Control In: T. Carraro, M. Geiger, S. Koerkel, R. Rannacher (Eds.) Multiple Shooting and Time Domain Decomposition Methods, Springer, 2015. https://doi.org/10.1007/978-3-319-23321-5_10
  20. S. Götschel, N. Chamakuri, K. Kunisch, M. Weiser:Lossy Compression in Optimal Control of Cardiac DefibrillationJ. Sci. Comput. 60(1):35-59, 2014. https://doi.org/10.1007%2Fs10915-013-9785-x
  21. S. Götschel, M. Weiser, C. Maierhofer, R. Richter, M. Röllig:Fast Defect Shape Reconstruction Based on the Travel Time in Pulse Thermography In: O. Büyüköztürk et al. (Eds.) Nondestructive Testing of Materials and Structures, RILEM Bookseries, Vol. 6, pp. 83-89, Springer, 2013. https://doi.org/10.1007/978-94-007-0723-8_11
  22. M. Weiser, S. Götschel:State Trajectory Compression for Optimal Control with Parabolic PDEsSIAM J. Sci. Comput. 34(1):A161-A184, 2012. https://doi.org/10.1137/11082172X
  23. Götschel, M. Weiser, A. Schiela:Solving Optimal Control Problems with the Kaskade 7 Finite Element ToolboxIn: A. Dedner, B. Flemisch, R. Klöfkorn (Eds.) Advances in DUNE, pp. 101-112, Springer, 2012. https://doi.org/10.1007/978-3-642-28589-9_8

Unrefereed Articles in Journals and Conference Proceedings

  1. J. P., Müller, S. Götschel, M. Weiser, C. Maierhofer:Thermografie mit optimierter Anregung für die quantitative Untersuchung von Delaminationen in kohlenstofffaserverstärkten KunststoffenIn: NDT.net Proc. DGZfP 2017, 2017. Proceedings paper
  2. S. Mitzscherling, E. Barth, S. Götschel, T. Homann, J. Prager, M. Weiser:Verbesserung und Qualifizierung der Ultraschallprüfung von Mischnähten im Primärkreis von KKWIn: NDT.net Proc. DGZfP 2017, 2017. Proceedings paper
  3. S. Götschel, C. Höhne, S. Kolkoori, S. Mitzscherling, J. Prager, M. Weiser: Ray Tracing Boundary Value Problems:Simulation and SAFT Reconstruction for Ultrasonic TestingIn: Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016), 2016. Proceedings paper
  4. S. Götschel, C. Maierhofer, J. P. Müller, N. Rothbart, M. Weiser:Quantitative Defect Reconstruction in Active Thermography for Fiber-Reinforced CompositesIn: Proceedings 19th World Conference on Non-Destructive Testing (WCNDT 2016), 2016. Proceedings paper
  5. S. Götschel, M. Weiser, Ch. Maierhofer, R. Richter:Data Enhancement for Active Thermography In: G. Cardone (Ed.) E-book Proceedings, 11th International Conference on Quantitative Infrared Thermography, 2012. Proceedings paper
  6. S. Götschel, M. Weiser:State Trajectory Compression in Optimal ControlProc. Appl. Math. Mech. 10(1), 579-580, 2010. https://doi.org/10.1002/pamm.201010282

Theses